
SimBusters: Bridging Simulation Gaps in Intelligent Vehicles Perception

Alberto Justo1, Javier Araluce1, Javier Romera2, Mario Rodriguez-Arozamena1,
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Abstract—Recent advances in automated vehicle technology
rely heavily on simulated environments for training and testing.
However, a significant challenge lies in bridging the gap between
simulated and real-world scenarios, as discrepancies between
these environments can affect the performance and reliability
after that transition, especially in perception. Particularly, Li-
DAR sensors are highly affected in this matter due to disparities
in pointcloud distribution and intensity. Therefore, this paper
presents an innovative approach to bridge the gap between
simulation and reality. For it, we test and validate a realistic
LiDAR library, PCSim, within the CARLA simulator, providing
an enhanced simulation environment. Our method involves in-
tegrating perception models, pre-trained on real-world datasets,
in this environment. Then, we develop a Real2Sim domain
adaptation method to transfer these models into the library,
leveraging their performance. Finally, we evaluate the 3D object
detection models in PCSim LiDARs to prove our methodology.

We have assessed this proposal in PCSim, obtaining promis-
ing results in mitigating the simulation-reality gap. Our eval-
uations provide a guidance for future effective transition from
virtual environments to real-world applications.

I. INTRODUCTION

Currently, LiDARs have become increasingly important in

perception for autonomous driving, due to their ability to

accurately represent their surroundings in three dimensions.

Thus the information they provide is helpful for 3D object de-

tection [1], [2], tracking [3], [4], and semantic segmentation

[5], [6] purposes, amongst many others. In this field, virtual

environments are highly desirable, as they provide unlimited

data capturing and easiness for labeling. They provide better

scalability, since there is no need of real vehicle for this

purpose. Nevertheless one of the main problems encountered

in 3D object detection is the transition from simulation

to reality, because of the disparity of data characteristics

between these two [7].

In real-world scenarios, LiDAR sensors capture complex

data, including the distribution and intensity of the points that

make up the 3D representation of the environment. These

attributes rely on various factors like the objects’ distance,

material properties, and ambient conditions. It is worth noting

that these attributes make each LiDAR brand model different,

despite the current trend towards data homogenization. Simu-

lated LiDAR data, however, often lacks this level of detailed

representation [8]. It may not accurately capture the disparity
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Fig. 1: Composite visualization of vehicles from synthetic and real-world
data. On the left, top image shows two vehicles captured by a camera in the
CARLA simulator. Bottom image displays the corresponding LiDAR point
cloud generated by Hesai Pandar64 within PCSim [10] library. On the right,
top and bottom images represent analogous views from a real-world dataset,
Pandaset [12], using the same LiDAR device.

of point distribution nor the intensity variations seen in real-

world data. Therefore, bridging this ’reality gap’ requires

improving the overall realism of simulated environments and

necessitates a focus on the detailed modeling of LiDAR

sensor behavior.

Currently, mitigating this breach presents a major chal-

lenge. This challenge is the replication of real-world sensor

variability and complexity in simulated environments, like

CARLA [9]. One brand-new solution for implementing real-

istic LiDARs into CARLA is PCSim [10]. This library can

simulate various widely-used LiDAR devices, each with dis-

tinct features, such as beam properties and motion distortion

[11]. PCSim, illustrated in Figure 1, enhances the default

CARLA LiDAR configuration, and will be used throughout

the work presented in this paper.

Moreover, another integral aspect of this bridge is the

concept of Domain Adaptation (DA) [7], [13]. This technique

adapts a model trained in one domain (the source) into

another, different domain (the target). In the context of

LiDAR simulation, domain adaptation takes a capital role.

Since there are many different approaches applicable to

LiDAR point clouds [14], [15], we build a Real2Sim method,

which transforms LiDAR intensity into a normalized form,

used in simulated environments.
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Main contributions given by this paper are the following:

• We present a novel assessment framework that evalu-

ates how much PCSim mimics real LiDARs by SOTA

metrics.

• We build a Real2Sim domain adaptation procedure,

to transfer real-world 3D object detection models in

CARLA through PCSim.

• In order to make fair ground truth measurements for

our validations, we have developed a Ground Truth

Pointcloud Clustering method.

II. RELATED WORKS

A. Simulation vs Reality

The exploration of 3D object detection methodologies

has seen a significant divergence in the use of simulated

and real-world datasets. Synthetic datasets, like SHIFT [16],

allow specific scenario fitting and easy data collection and

annotation. In contrast, real-world datasets, such as NuScenes

[17], offer a richer variety of natural scenarios, holding labor-

intensive data collection and annotation. Although simulated

data is quite accurate overall, it may still have differences

from real-world data due to factors such as sensor noise,

intensity, point cloud distributions, environmental conditions,

and the physical properties of objects.

Regarding these issues, several studies [18], [19] have

shown that LiDAR-based 3D object detection models trained

solely on simulated data often underperform when tested on

real-world scenes. Therefore, solutions for making LiDAR

simulations better resemble reality have emerged over the

years. In one hand, data-driven generative models synthesize

LiDAR data based on a given scene representation [20].

Although these methods are realistic and computationally

efficient, they tend to not adapt well to new environments

or be easily configurable. On the other hand, hybrid methods

[21], [22] combine different parts of data-driven generative

models and simulation environments. They constitute digital

twins with CAD models and real-world sensor data, but find

the same generalization problems.

Within this frame of reference, even though new hybrid so-

lutions are taking more importance lately, automated driving

simulators are still a common ground for many researchers.

From our point of view, we believe that the implementation

of realistic LiDAR libraries shows a cornerstone in advancing

the fidelity of simulated environments in this field. That

is the reason why we choose to evaluate PCSim to prove

this statement in 3D object detection. To the best of our

knowledge, this library has not been evaluated the way we

do in our research before.

B. Domain Adaptation

Currently, there are still many challenges for applying

models across different domains, sensor types, and from

simulated to real-world environments.

Domain-to-domain and sensor-to-sensor adaptations [23]

primarily involve techniques like transfer learning and

convolutional-network-based feature extraction. These strate-

gies focus on using the knowledge gained in one area and

applying it successfully in another.

In simulation-to-reality (Sim2Real) [24] adaptation, Gen-

erative Adversarial Networks (GANs) are frequently utilized

to transform synthetic LiDAR data into a form that recreates

reality more closely.

However, all these methods previously mentioned rely on

deep learning methods. They are seen as ’black boxes’,

making it difficult to understand how they handle domain

adaptations or to diagnose why they fail. Their effectiveness

is dependable on having large, diverse datasets and signifi-

cant computational resources. Handling domain adaptations

through simpler algorithms, like normalization, gives a more

practical solution and less intensive in computation.

III. METHODOLOGY

Simulated environments, when compared to actual LiDAR

readings, have two major drawbacks: disparity in point cloud

distribution and intensity [7].

In terms of LiDAR simulation, point clouds are obtained

through ray tracing [25]. Ray intersections are determined

by projecting rays from the original sensor position outward

to the surface of the environmental geometry, as shown

mathematically in Equation 1.

pi =





x

y

z



 = ri





cos(φ) cos(θ)
cos(φ) sin(θ)

sin(φ)



 (1)

Here we can see the orientation of the laser, defined by

azimuth angle θ and polar angle φ. Distance ri is obtained

from ray casting [25]. These variables are used to compute

the coordinates of point pi, translated to Cartesian coordi-

nates. In CARLA, these parameters are idealized, resulting

in more uniform distributions and consistent measurements.

A Gaussian noise can be added also in these calculations to

make them closer to reality. PCSim incorporates ri, θ and

φ from the channel distribution specifications of each real

LiDAR device.

Intensity of reflected signals in LiDAR provides critical

information about the surface properties of detected objects.

Generally, a lower or higher intensity implies the mea-

surement estimation will be less or more reliable. Intensity

is calculated using the Beer-Lambert Law [26], shown in

Equation 2.

I

I0
= e−a·d (2)

In this equation, I represents the intensity of light after it

has passed through the material. I0 is the initial intensity of

the light before entering the material. The exponent −a · d
corresponds to the product of the absorption coefficient of

the medium (a) and the thickness of the medium (d) where

light passes through.

CARLA encodes intensity information using the RGB

color values in a virtual image. It is a simplified model
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Fig. 2: SimBusters. Our assessment framework for PCSim library

TABLE I: Datasets characteristics for training PointPillars

Dataset LiDAR Channels vFOV(º) Range(m) Frames BBoxes

KITTI [29] Velodyne HDL-64 64 27 120 7.4k 80k
NuScenes [17] Velodyne HDL-32 32 41 100 390k 1.4M
Pandaset [12] Hesai Pandar64 64 40 200 16k -

compared to the complexity of LIDAR systems in the real

world. When detecting an object with a LiDAR, there is

an additional chance (’drop-off’) that the point will be

disregarded. This chance is based on the intensity of the

detected point. Regarding this matter, PCSim uses CARLA’s

intensity, but provides different drop-off intensity parameters

for each sensor model.

A. 3D Object Detection

From all open-source LiDAR-based 3D object detection

models, we have chosen PointPillars [27] , due to its good

overall performance, low training time and fast runtime (16.2

ms on a GTX 1080Ti [28]). As shown in Table I, we

have selected three different real-datasets for training these

models: KITTI, NuScenes and Pandaset. They encompass

large amounts of data, collected under various environ-

mental conditions, giving a comprehensive training ground.

Moreover, they offer standarized benchmarks. In particular,

KITTI and Pandaset provide intensity values alongside spatial

coordinates. NuScenes does not give intensity information,

still contributes with more varied environmental and lighting

conditions.

B. Real2Sim Domain Adaptation

A normalization process is necessary to enable a consis-

tent interpretation of intensity data across different LiDAR

models. Deep learning methods [13] require extensive data

and computational resources for training models to learn

sensor-specific patterns. However, a mathematical approach

to normalization gives a simpler alternative. This procedure

is shown in Equation 3.

Inormalized =
(Iraw − Imin)× (Rmax −Rmin)

Imax − Imin

+Rmin (3)

Here, Iraw represents the raw intensity value detected by

LiDAR sensor. The terms Imin and Imax correspond to the

minimum and maximum detectable intensity values for the

sensor. Rmin and Rmax denote the normalized range, typically

0 and 255 to align with an 8-bit scale. Our normalization not

only makes intensity values from different LiDAR sensors

comparable, but also aligns them with standard image inten-

sity ranges. This normalization technique aims to transform

the sensor-specific intensity values into a standardized scale.

Therefore, we enable direct comparability across different

LiDAR sensors and real-to-simulated domains.

C. Ground Truth Pointcloud Clustering (GTPC)

In many situations, LiDAR-based 3D object detection in

automated vehicles is conditioned by factors like sensor range

or measurement occlusions in particular situations, affecting

the detection’s reliability. Due to these factors, comparing

all ground truth measurements against the current frame’s

3D object detections makes little sense. This means there is

a need of a fairer method for comparing 3D object detections

to ground truth measurements that count on occlusions and

sensor range. Common methods like Euclidean Distance are

highly extended to rule out ground truth measurements. How-

ever, they only rely on threshold distances in the surroundings

of the ego-vehicle, but don’t consider situations where the

ego-vehicle cannot detect nearby agents due to obstructions.

Therefore, we choose to develop a Ground Truth Pointcloud

Clustering (GTPC) filter. This approach quantifies the point

cloud data by counting the points enclosed within a pre-

annotated bounding box. Thus, Equation 4 determines the set

of points (CN ) in the point cloud, consisting of k samples

(ci), that are within the bounding box (3DBBox).

CN = {ci} ⊂ 3DBBox ∀i ∈ k < |Z| (4)

Det =

{

1 if CN ≥ Th

0 if CN < Th
(5)

In Equation 5, if the number of points CN inside each

bounding box are equal or higher than a certain threshold

Th (in our case, 10 points as done in [17]) then we take that

as ground truth measurement. Otherwise, we rule out this

position. GTPC provides an intuitive method for filtering the
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actual agent positions near the ego-vehicle, as it considers

occlusions.

IV. EXPERIMENTS

A. Implementation Details

In our experimental setup, we recorded a sample dataset

comprising 5.000 frames with an average of 20 cars per

frame. This data was sourced from the default environments

of Town04 and Town05 from CARLA. For the detection

phase, we employed the open-source platform OpenPCDet

[28], tailored for 3D object detection from point cloud data.

The computational backbone of our experiments feautures:

Nvidia GeForce RTX 2080 SUPER GPU and an AMD®

Ryzen 9 3950x 16-core processor × 32 GB of RAM.

B. Metrics

Intersection over Union (IoU): Intersection over Union

(IoU) is a metric used to measure the accuracy of a 3D object

detector on a particular dataset [2]. Equation 6 displays IoU

as the ratio of the area of overlap between the predicted

bounding box and the ground truth bounding box to the area

of union of these two boxes.

IoU =
Area of Overlap

Area of Union
(6)

Mean Average Precision (mAP): It is the most popular

metric used to evaluate the performance of a detector across

different classes and IoU thresholds, and many other metrics

are redefinitions of this one [2]. The Average Precision (AP),

referred in Equation 7, for a single class is calculated as the

average of the precision values at the points where recall

changes. P (R) represents the precision-recall curve and AP

is the area under the curve. The mAP, illustrated in Equation

8, is then the mean of these AP values.

AP =

∫

1

0

P (R) dR (7)

mAP =
1

N

N
∑

i=1

APi (8)

V. RESULTS

This section shows the final results after conducting our

experiment. We evaluated PointPillars model, pre-trained in

real-world datasets, using 4 different sensor models with PC-

SIM + DA technique. We incorporated our Real2Sim domain

adaptation, to see how detector’s performance behaves after

intensity normalization. In this context, we specify detection

metrics only for ”Car” class. Table II shows PointPillars

performance in real datasets, which states the context for

our performance metrics in Table III, which we compared

against.

To make a more equitable comparison between these

metrics, we decided to take mAP within the highest IoU

threshold (0.7). So, our overall detections are more strict,

hence mAP values are lower. We are comparing our ex-

periment against entire real datasets which consider more

environments and situations, so we demand more from our

detections. Table IV shows that the implemented Real2Sim

states an upgrade in both KITTI and Pandaset pre-trained

PointPillars. Improvements are between 2.81 % and 10.26 %

for mAP and between 0 % and 1.42 % for IoU. However,

NuScenes pre-trained model underperformed, regardless of

applying Real2Sim. Thus we can infere two statements.

First, models that use intensity (unlike NuScenes) perform

better after normalization. Second, pointcloud distribution

affects the evaluation. We can see this in NuScenes metrics

comparison between HDL-32 and CARLA-32 LiDARs. They

differ when it comes to object detection performance, as their

pointcloud distribution is not the same.

In essence, these results not only validate the reliability

of PCSim library, but also our Real2Sim method. Although

improvements showed are promising, we have to consider

the scope of our experiment, in comparison to the datasets

stated in the SOTA. There are still some improvements in

terms of PCSim intensity simulation to be done.

Moreover, Figure 3 illustrates the representation of the

same scene, using the four LiDAR devices we have evaluated.

After applying Real2Sim, we can appreciate the improve-

ments mentioned before. Figures 3(a) and 3(b) illustrate

the detections vs ground truth positions in Velodyne HDL-

64, using pre-trained PointPillars in KITTI dataset. Figures

3(c) and 3(d) show the same comparison, but in Pandar64,

using the same pre-trained model in Pandaset. However, our

Real2Sim method applied at NuScenes, shown in Figures 3(e)

to 3(h), does not improve as models trained in this dataset

do not count on intensity.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presents our assessment framework for mit-

igating the gap between simulation and reality in intelli-

gent vehicles perception. For this purpose, we have used a

TABLE II: ”Car” Baseline metrics of PointPillars in real datasets

Dataset IoU mAP@0.7

KITTI 0.7 0.39
NuScenes 0.84 0.68
Pandaset 0.88 0.71

TABLE III: Comparison of procedures in PCSim. We show in which dataset
PointPillars was trained, PCSim LiDAR where is tested, domain adaptation
(DA) and the performance metrics. The ”-” implies that no method was
applied.

Dataset PCSim LiDAR DA IoU mAP@0.7

KITTI
HDL-64 - 0.67 0.34
HDL-64 Real2Sim 0.71 0.43

NuScenes

HDL-32 - 0.77 0.59
HDL-32 Real2Sim 0.77 0.59

CARLA-32 - 0.76 0.54
CARLA-32 Real2Sim 0.76 0.54

Pandaset
Pandar64 - 0.86 0.65
Pandar64 Real2Sim 0.88 0.73
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(a) Detections vs Ground Truth in PCSim Velodyne
HDL-64, without DA

(b) Detections vs Ground Truth in PCSim Velodyne
HDL-64, with Real2Sim

(c) Detections vs Ground Truth in PCSim Pandar64,
without DA

(d) Detections vs Ground Truth in PCSim Pandar64. with
Real2Sim

(e) Detections vs Ground Truth in PCSim Velodyne
HDL-32, without DA

(f) Detections vs Ground Truth in PCSim Velodyne
HDL-32, with Real2Sim

(g) Detections vs Ground Truth in CARLA 32-beams
LiDAR, without DA

(h) Detections vs Ground Truth in CARLA 32-beams
LiDAR, with Real2Sim

Fig. 3: Qualitative results showing our assesment framework. We represent: the ground truth measurements against the detections in the current frame.
Ground truth is represented after applying GTPC. We also compare the detections with and without DA.
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TABLE IV: Percentages in performance metrics between our experiment in
PCSim and real datasets. Decreases and increases are represented here.

Dataset PCSim LiDAR DA IoU mAP@0.7

KITTI
HDL-64 - ↓4.29% ↓12.34%
HDL-64 Real2Sim ↑1.42% ↑10.26%

NuScenes

HDL-32 - ↓8.33% ↓13.23%
HDL-32 Real2Sim ↓8.33% ↓13.23%

CARLA-32 - ↓9.52% ↓20.58%
CARLA-32 Real2Sim ↓9.52% ↓20.58%

Pandaset
Pandar64 - ↓2.27% ↓8.45%
Pandar64 Real2Sim 0.0% ↑2.81%

SOTA model, PointPillars, pre-trained in real datasets, from

a vehicle 3D object detection, and evaluated it on an en-

hanced CARLA LiDAR library (PCSim [10]). Moreover, we

have implemented a ground truth filter in CARLA default’s

agent positions, Ground Truth Pointcloud Clustering, to make

comparisons with PointPillars detections. On top of that,

we have developed a novel Real2Sim domain adaptation

method, to increase our 3D object detection performances

in this library. Our results, based on SOTA metrics, highlight

the importance of considering the intensity and pointcloud

distribution in LiDAR-based 3D detectors. Furthermore, our

Real2Sim method enables the normalization of intensities to

a common format, tailored for sensor-to-sensor and real-to-

simulated DA.

To sum up, our assessment in PCSim shows that this

library proves to be a promissing solution for simulating

realistic LiDARs in CARLA. We aim to work on further

validations in this field, comparing more 3D object detec-

tion models, real-world datasets and sensors to this library.

Moreover, we think that PCSim has potential to be a starting

point for transitioning models trained in simulated data to

real-world situations.
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