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Abstract— Cooperative perception is a technique that en-
hances the on-board sensing and perception of automated
vehicles by fusing data from multiple sources, such as other
vehicles, roadside infrastructure, cloud/edge servers, among
others. It can improve the performance of automated driv-
ing in complex scenarios, like unsignalled roundabouts or
intersections where the visibility and awareness of other road
users are limited. Motion Prediction (MP) is a key component
of cooperative perception, as it enables the estimation and
prediction of microscopic traffic states, such as the positions
and speeds of all vehicles. It relies on information from other
agents and their relationships among them, so the information
provided by external sources is valuable because it enhances
the understanding of the scene.

In this paper, we present improved MP through Vehicle to
Vehicle (V2V) communication. We have trained Hierarchical
Vector Transformer (HiVT) to be a map-less solution that can
be used in road domains. With this model, we have imple-
mented and compared two association methods to evaluate our
framework on a real V2V dataset (V2V4Real). Our evaluation
concludes that our V2V MP improves performance due to better
scene understanding over a single-vehicle MP.

I. INTRODUCTION

Perception systems have been a crucial development task
for self-driving vehicles. The recent developments use deep
learning for different perception tasks such as 3D object
detection [1], [2], object tracking [3], [4], semantic segmen-
tation [5], [6] and motion prediction [7], [8]. However, these
systems do not take advantage of the multi-view provided
by a collaborative framework. These systems suffer from
several challenges, such as occlusion and near vision, which
limit their performance [9]. A cooperative framework is
particularly suitable to improve a motion prediction system
because the information needed to process the data (agent
positions) is light (due to limited bandwidth). In addition,
consideration of social interaction can take advantage of
more agents in the scene to make a more accurate prediction.

Motion prediction, also known as motion forecasting,
addresses the challenge of predicting future trajectories of
dynamic agents surrounding the ego-vehicle. Predicting the
future behaviour of traffic agents around the ego-vehicle is
one of the key ongoing challenges in reaching full self-
driving autonomy [10], [11]. Predicted trajectories help the
motion planning system to achieve an efficient and safe path
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Fig. 1: Illustration of CP to accurately predict the movement of surrounding
agents. Red bounding boxes are detected by CAV 1 and blue bounding boxes
are only detected by CAV 2. The predicted trajectory of an agent is shown
in green.

for the ego-vehicle. Autonomous vehicles need to understand
the environment to anticipate the future on the road ahead.

Despite their advancements, single-vehicle perception
technologies continue to face significant hurdles. The pri-
mary challenges include sparse observations due to oc-
clusion, limited sensor Field of View (FoV), and sensor
resolution [12]. Furthermore, the system’s robustness is
questioned due to its vulnerability to sensor errors caused by
adverse weather conditions and hardware failures [13]. These
issues limit the potential and safety of automated vehicles in
intricate driving situations.

The field has seen the emergence of Cooperative Per-
ception (CP) technology to mitigate these limitations. This
technology emphasizes the interaction between multiple
agents to compensate for the shortcomings in single-vehicle
perception. The essence of CP is the fusion of sensor data
from various agents [14].

Figure 1 shows an example of an intersection where CP is
crucial for the prediction of the movement of the surrounding
agents. Vehicle 2 is occluded by Vehicle 1, a fire truck, and
CAV 1 cannot accurately predict the movement of Vehicle 3,
a motorcycle, as a result. However CAV 2 can see vehicle 2
and transmits this information to CAV1 for a better trajectory
prediction. Only one agent trajectory has been represented
for a clearer explanation.

The following paper presents a study of cooperative per-
ception focused on motion prediction. The analysis was
performed on a real Vehicle to Vehicle (V2V) dataset
(V2V4Real [15]) using a modified state-of-the-art motion
prediction model [7]. We used two association methods to
avoid double detections. The contributions are as follows:

• We have adapted and trained HiVT [7] in Argoverse 1
[16] to be a map-less solution model that we can use
in other domains where the map is not available.

• We have studied two association methods for CP: Eu-



clidean distance to the connected vehicle and bounding
box clustering.

• We have evaluated the framework performance in a
novel V2V real dataset (V2V4Real [15]) with an ex-
tensive comparison of different options.

II. RELATED WORKS

A. Cooperative perception for Motion Prediction

Predicting the trajectory of surrounding dynamic objects
has been widely studied in the literature. The development
has been based on some publicly available datasets. Some
of these datasets are: NuScenes Prediction [17] is a publicly
available large-scale dataset consisting of 40k scenarios for
AD. The Waymo Open Motion Prediction [18] which has
1.1 M examples. Argoverse 1 Motion Forecasting Dataset
[16], which is composed of 324,557 trajectories.

However, while these datasets have taken the motion
prediction task to the next level, they do not consider infor-
mation from associated perceptual providers. To address this
challenge, several datasets have been collected that capture
perceptual systems from different perspectives. Table I shows
some of these datasets.

Some of these datasets have been collected in simula-
tion environments [19]–[21]. They have used the CARLA
simulator [22] to collect data from different perspectives
(vehicles and infrastructure). However, although simulation
environments allow unlimited data collection, they are biased
by over-simplified vehicle physics. In particular, motion
prediction requires different driving behaviours that are not
biased by the simulator physics. For this reason, other
datasets have been collected in real data [15], [23]–[25].

DAIR-V2X [24] was the first large-scale vehicle-
infrastructure cooperative autonomous driving dataset. It
collects data from the infrastructure (10k frames) and a
vehicle (22k frames). Incidentally, the data must be approved
to be downloaded outside of China.

The A9 dataset [23] collected 4.8k frames from two
cameras and two LiDARs placed on infrastructure. They
do not provide information from a connected vehicle. Since
motion prediction is mainly needed for the motion planning
of a vehicle, we believe that the information should come
from at least one CAV. Moreover, they plan to address this
concern in the near future.

Recently, the V2X-Seq dataset [25] was released. It is
the first large-scale sequential V2X dataset. The temporal
information makes it perfect for motion prediction. However,
as DAIR-V2X, its access outside China is restricted, so we
were not able to use it in this work.

For these reasons, we have used V2V4Real [15], which
consists of data from two vehicles recorded in real environ-
ment. They do not provide sequence information, but the
dataset is prepared for tracking purposes, so we adapted the
dataset to provide sequence information. We will provide
detailed information about the dataset in future sections of
this work.

B. Motion prediction

There are several approaches within the motion prediction
paradigm to solve this complex challenge. Most of them
rely on the map to increase their accuracy [7], [10], [26]. It
supplements the online information with high-fidelity maps.
However, this information is not always available and makes
the model less scalable to other domains, as the construction
of HD maps is expensive and time-consuming [27].

Nonetheless, other models do not require a map and
are, therefore, suitable for this work. CRAT-Pred [28] uses
a graph convolution method to obtain the trajectory pre-
dictions. However, its output lacks confidence for the k-
predictions (k = 6) and is not fast enough for real-time appli-
cations. The authors in [27] propose a map-free method that
gives on-pair results on accuracy with other SOTA methods
based on maps. However, they have not published their code,
and their results are not reproducible. Nevertheless, we have
based our work on HiVT [7], which won the Argoverse 1
challenge in 2022. The original model uses map information
that is encoded to produce high-fidelity trajectories.

III. FRAMEWORK

This section explains the construction of the collaborative
framework developed (Figure 2). First, the dataset is modi-
fied for use in the MP task. Then, the HiVT architecture is
transformed to be used without a map. Finally, the associa-
tion methods are used to filter the same detections from two
sources.

A. Dataset

The V2V4Real [15] dataset has three perception tasks:
cooperative 3D object detection, cooperative 3D object track-
ing, and Sim2Real domain adaptation for CP. Nevertheless,
we aim to prove its value for motion prediction, which
is another perception task that can be enhanced thanks to
collaborative information.

Following the method proposed in Argoverse 1 [16], a
motion prediction dataset was constructed using the infor-
mation from the two vehicles of V2V4Real. First, we obtain
the detections from both cars. To do this, we used the ground
truth of the dataset as we did not want to introduce noise
from a detector into our method. Then, we transform all
the detections into the same coordinate system using the
transformation matrices provided by the dataset (Equation 1).
P is the local point, T is the transformation matrix and P ′ is
the global point. Furthermore, we store their local positions
with the CAV source as a coordinate frame. We also collect
and transform the point clouds for visualisation and the
association method. As we carry out the prediction in Bird’s
Eye View (BEV), we have disregarded the z coordinate.

P ′ = T · P (1)

For the temporal information, we used 50 frames recorded
at 10 Hz. Following the same configuration as Argoverse,
where the past data is 2 seconds, and the predicted horizon
is 3 seconds. We feed the past information into the network



TABLE I: Comparison between Cooperative Perception-related Datasets.

Dataset Real/Sim V2X Size (km) Lidar pcds Maps 3D boxes Classes Locations

OPV2V [19] Sim V2V - 11k Yes 230k 1 CARLA
V2X-Sim [20] Sim V2V&I - 10k Yes 26.6k 1 CARLA
V2XSet [21] Sim V2V&I - 11k Yes 230k 1 CARLA

A9 Intersection [23] Real V2I - 4.8k No 57.4k 10 Hanover, Germany
DAIR-V2X [24] Real V2I 20 39k No 464k 10 Beijing, CN
V2X-Seq [25] Real V2V&I - 210k (seq) No 20,301k (2D) 8 Beijing, CN
V2V4Real [15] Real V2V 410 20k Yes* 240k 5 Ohio, USA

Notes: * indicates that the map are listed as public but they have not been released by the day of this work.
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Fig. 2: Cooperative Framework for Motion Prediction

TABLE II: Performance of the motion prediction models in Argoverse 1
validation set.

Model Map minADE ↓ minFDE ↓ MR (%) ↓

HiVT-64 [7] ✓ 0.69 1.04 0.10
HiVT-128 [7] ✓ 0.66 0.96 0.09

Crat-Pred [28] ✗ 0.85 1.44 0.17
HiVT-64 (ours) ✗ 0.76 1.24 0.14

and use the future one to compare with the predictions to
get performance metrics on the method.

B. HiVT

To obtain the predictions, we based our proposal on HiVT
[7] with the map information disabled. We train the model
in Argoverse 1 to learn the spatio-temporal relationships
between the agents in the scene. We first organise a traffic
scene as a collection of vectorised entities. The model
consists of a local encoder that encodes the agent-agent
interactions. This representation is rotation-invariant for each
agent. A global module encodes the long-range dependencies
between the local agent representations, which are agent-
centric. Finally, a multimodal future decoder that predicts
all agent trajectories in a single pass. We represent the
output in the local coordinate frame, the Autonomous Vehicle
(AV) position, which is one of the CAVs. We will evaluate
changing this local framework to measure the impact of the
viewpoint in our collaborative framework.

Table II compares the obtained results in Argoverse 1 by
different models, evaluated in terms of three metrics used in
motion prediction: Minimum Average Displacement Error
(minADE), Minimum Final Displacement Error (minFDE)
and Miss Rate (MR).

HiVT has been presented, using map information, in two
modalities (embedded dimension of 64 and 128). The best
performance being achieved with an embedded dimension
of 128. The modification made to HiVT to operate without
a map (embedded dimension of 64), as per our current
proposal, results in a 10% decrease in minADE, a 19%
decrease in minFDE, and a 4% decrease in MR performance
as the cost for allowing map free application in different
locations.

C. Association methods

We compared two methods of association in the presence
of multiple perception systems. It is important to note that
these methods do not consider the confidence of detections,
as we use the ground truth from the dataset. In collaborative
perception systems where the confidence of the detectors is
available, alternative methods should be used. The two CAVs
from the scene are denoted by A and B.

1) Association by Euclidean distance: The study assessed
the correlation between objects with the same tracker in
the collaborative framework. We select the detection closest
to the CAV for greater accuracy. Equation 2 shows the
Euclidean distance calculation. We represent each detection
by its position in BEV (Detpos = xdet, ydet). The Con-
nected Autonomous Vehicle (CAV) position is also in BEV
(CAVpos = xCAV , yCAV ). We then select the detection with
the minimum distance for a pair of detections that share the
same tracker, as shown in Equation 3.

De =
√
(xdet − xcav)2 + (ydet − ycav)2 (2)

det = argmin(DA
e , D

B
e ) (3)



2) Association by bounding box clustering: We tested an
alternative association method in addition to the Euclidean
distance to the CAV. This method measures the number of
points from the point cloud within the bounding box. It
provides higher accuracy than the Euclidean distance, as it
considers occlusions.

The Equation 4 is the set (P ) of points (pi) from the point
cloud having k samples that fall within the bounding box
(3DA

box). The Equation 5 does the same calculation for the
point cloud with l samples falling within the bounding box
(3DB

box). The 3DA
box and 3DB

box bounding boxes refer to the
same object. We then compare both sets (P,Q) to select the
larger one (Equation 6), which will be our detection.

P = {pi} ⊂ 3DA
box ∀i ∈ k < |Z| (4)

Q = {qj} ⊂ 3DB
box ∀j ∈ l < |Z| (5)

det = max({dim(P ), dim(Q)}) (6)

IV. EXPERIMENTAL SETUP

We used the complete V2V4Real dataset, consisting of
20,000 frames, for our experiment. We created a sequenced
dataset with it to evaluate motion prediction. The original
authors divided into three days the dataset, with several
sequences per day containing the recorded frames. The first
day has 2,726 sequences, the second has 3,246, and the third
has 1,644. We evaluated a total of 7,616 over three days. It is
not a large dataset for motion prediction, so we did not use it
for training and only evaluated a trained model. The model
used was trained in Argoverese 1, as mentioned above.

We used common metrics for evaluating motion prediction
[7], [16]: Minimum Average Displacement Error (minADE),
Minimum Final Displacement Error (minFDE), Miss Rate
(MR), Percentage of minADE (p-minADE), Percentage of
minFDE (p-minFDE), Percentage of Miss Rate (p-MR ),
Brier Score for minADE (brier-minADE) and Brier Score
for minFDE (brier-minFDE).

V. RESULTS

In this section, we describe the results of our experiment.
We evaluated eight different V2V + association combina-
tions:

• We tested the two CAVs on their own (Tesla and Astuff),
without V2V enhanced perception.

• We evaluated the enhanced motion prediction by V2V,
first without any association method and then with the
Euclidean and bbox clustering association methods, to
get a better surround understanding.

• We evaluated changing the viewpoint for the motion
prediction section between the two possible CAVs,
following the work proposed in [29]. It determines
which CAV is at the center of the scene. Making all
the trajectories related to this frame.

Table III shows the obtained results for the main motion
prediction metrics selected above. We can observe the per-
formance of the single-vehicle method is worse compared
to the V2V enhanced method. Additionally, we present the
average number of actors. We conclude that since there are
more actors in the V2V scene, it increases the overall error
but gives more information about the environment. For this
reason, we have normalised all metrics by the number of
actors. These metrics present a better conclusion about the
surround understanding. These results can be seen in Table
IV.

Furthermore, the results of the two association methods
do not allow us to conclude which one is better, as there is
not a marked difference between the two results. However,
we can see a slight difference for all the FDE metrics, where
the Euclidean association gives a better result (Table III).

When changing the point of view of the model, we ob-
serve the same behaviour. There is not significant difference
between one system and the other. This is due to HiVT being
translation and rotation invariant.

As mentioned above, Table IV shows the comparison
between the different methods, but considering the number
of actors. This comparison gives a better conclusion about
our work, which improves the motion prediction performance
by increasing the number of actors. For better visualisation,
we have presented the calculated performance increase in
percentage in Table V. We can see a better performance
thanks to our improved MP, with an increase in all metrics
between 13 % and 24 % over the single-vehicle method.
Moreover, it shows a better increase in performance in the
”brier” metrics, which leads to the conclusion that the model
not only predicts better the k-options but also the confidence
for each possible trajectory.

Finally, we have shown some qualitative results from a
sequence we have evaluated (Figure 3). Figures 3(a) and 3(d)
show the CAV without enhanced MP. Figures 3(b) and 3(e)
show the MP with V2V using the Euclidean association and
Figures 3(c) and 3(f) with the bbox clustering association.
We can see an improvement between figures 3(c) and 3(e).
They show that the information from the CAV ahead helps
to get a better trajectory prediction. The reason for this is
that the CAV behind is unable to see the truck ahead or the
vehicles on the side.

VI. CONCLUSION AND FUTURE WORKS

We have presented our Enhanced Motion Prediction by a
Cooperative Framework. For this purpose, we have adapted
and trained a SOTA model (HiVT) from a single vehicle MP
and evaluated it on a real V2V dataset (V2V4Real [15]).
In addition, we have used two association methods that do
not require the confidence of the detectors, as we have used
the GT from the dataset. We have evaluated a Euclidean
and a Bounding Box clustering association method. We have
presented our results using SOTA metrics and demonstrated
that our collaborative framework achieves a better scene
understanding thanks to the information provided by other
CAVs. It can be inferred that the results can be enhanced



TABLE III: Comparison of methods on the V2V4Real dataset. We show the CAVs, the association method, the viewpoint, the number of actors considered
and the performance metrics. The ”-” denotes that there is no association method used.

CAVs Association Viewpoint Number minADE minFDE MR ↓ p-minADE ↓ p-minFDE ↓ p-MR ↓ brier-minADE brier-minFDE
Actors (m) ↓ (m) ↓ (m) ↓ (m) ↓

Tesla - Tesla 7.74 1.14 2.22 0.32 2.84 3.91 0.87 1.80 2.88
Astuff - Astuff 8.45 1.22 2.30 0.33 2.90 3.99 0.87 1.88 2.96
V2V - Tesla 14.58 1.34 2.51 0.33 3.02 4.19 0.87 2.00 3.17
V2V Euclidean Tesla 10.19 1.26 2.37 0.32 2.95 4.05 0.87 1.92 3.02
V2V Bbox clustering Tesla 10.19 1.26 2.37 0.32 2.95 4.06 0.87 1.92 3.03
V2V - Astuff 14.58 1.34 2.52 0.33 3.03 4.21 0.87 2.00 3.18
V2V Euclidean Astuff 10.19 1.27 2.38 0.32 2.95 4.07 0.87 1.92 3.04
V2V Bbox clustering Astuff 10.19 1.27 2.39 0.33 2.96 4.08 0.87 1.93 3.05

TABLE IV: Comparison of methods on the V2V4Real dataset normalised by the number of actors in the scene. We show the CAVs, the association method,
the viewpoint and the performance metrics. The ”-” denotes that there is no association method used.

CAVs Association Viewpoint minADE ↓ minFDE ↓ MR ↓ p-minADE ↓ p-minFDE ↓ p-MR ↓ brier-minADE ↓ brier-minFDE ↓

Tesla - Tesla 0.15 0.29 0.04 0.37 0.51 0.11 0.23 0.37
Astuff - Astuff 0.14 0.27 0.04 0.34 0.47 0.10 0.22 0.35
V2V Euclidean Tesla 0.12 0.23 0.03 0.29 0.40 0.09 0.19 0.30
V2V Bbox clustering Tesla 0.12 0.23 0.03 0.29 0.40 0.09 0.19 0.30
V2V Euclidean Astuff 0.13 0.24 0.03 0.29 0.40 0.09 0.19 0.30
V2V Bbox clustering Astuff 0.12 0.23 0.03 0.29 0.40 0.09 0.19 0.30

TABLE V: Increased performance through our V2V framework compared to a single vehicle, taking into account the number of vehicles. We show the
comparison, the association method, the viewpoint and the performance metrics.

Comparison Association Viewpoint minADE minFDE MR p-minADE p-minFDE p-MR brier-minADE brier-minFDE

V2V vs Tesla Euclidean Tesla 16% 19% 22% 21% 21% 24% 19% 20%
V2V vs Tesla Bbox clustering Tesla 16% 19% 22% 21% 21% 24% 19% 20%
V2V vs Astuff Euclidean Astuff 13% 14% 19% 15% 15% 17% 14% 14%
V2V vs Astuff Bbox clustering Astuff 14% 14% 19% 16% 15% 17% 15% 15%

(a) Single-vehicle Tesla (b) Euclidean association with the Tesla as view-
point

(c) Bbox clustering association with the Tesla as
viewpoint

(d) Single-vehicle Astuff (e) Euclidean association with the Astuff as
viewpoint

(f) Bbox clustering association with the Astuff
as viewpoint

Fig. 3: Qualitative results showing our comparison. We represent: the Tesla point cloud, the Astuff point cloud, the agents the past observations, the
ground-truth and our multi-modal prediction (with the highest confidence). We show, from left to right, single-vehicle, euclidean and bbox clustering.



by incorporating map information. We intend to continue
with this experiment on this dataset, including the map
when it becomes available. To measure the impact of map
representation in a V2V MP framework.

Besides, we plan to conduct this study in other collabora-
tive domains. We will conduct an experiment in a simulated
environment to create complex scenarios. The aim is to
assess the effect of detector errors on the system.
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[6] B. Zhou and P. Krähenbühl, “Cross-view transformers for real-time
map-view semantic segmentation,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 13760–
13769, 2022.

[7] Z. Zhou, L. Ye, J. Wang, K. Wu, and K. Lu, “Hivt: Hierarchical vector
transformer for multi-agent motion prediction,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8823–8833, 2022.

[8] Z. Zhou, J. Wang, Y.-H. Li, and Y.-K. Huang, “Query-centric trajectory
prediction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 17863–17873, 2023.

[9] Y. Han, H. Zhang, H. Li, Y. Jin, C. Lang, and Y. Li, “Collaborative
perception in autonomous driving: Methods, datasets and challenges,”
arXiv preprint arXiv:2301.06262, 2023.
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